Low and High Field Scaling Limits for the Vlasov- and Wigner-poisson-fokker-planck Systems

نویسندگان

  • A. Arnold
  • J. A. Carrillo
چکیده

This paper is concerned with scaling limits in kinetic semiconductor models. For the classical Vlasov-Poisson-Fokker-Planck equation and its quantum mechanical counterpart, the Wigner-Poisson-Fokker-Planck equation, three distinguished scaling regimes are presented. Using Hilbert and Chapman-Enskog expansions, we derive two drift-diffusion type approximations. The test case of a n+−n−n+ diode reveals that different scaling regimes may be present at the same time in different subregions of a semiconductor device. Numerical simulations of the stationary solution illustrate the good approximation of the kinetic solution by a drift-diffusion model and by a hybrid (adaptive domain decomposition) model. AMS 1991 Subject Classification: 35B25, 76P05, 82C70, 65M99

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low and High Field Scaling Limits Forthe

This paper is concerned with scaling limits in kinetic semiconductor models. For the classical Vlasov-Poisson-Fokker-Planck equation and its quantum mechanical counterpart, the Wigner-Poisson-Fokker-Planck equation, three distinguished scaling regimes are presented. Using Hilbert and Chapman-Enskog expansions, we derive two drift-diiusion type approximations. The test case of a n + ?n?n + diode...

متن کامل

Smoothing Effect for the Non-linear Vlasov-poisson-fokker-planck System

We study a smoothing effect of a non-linear degenerate parabolic problem, the Vlasov-Poisson-Fokker-Planck system, in three dimensions. We prove that a solution gives rise actually to very smooth macroscopic density and force field for positive time. This is obtained by analyzing the effect of the Fokker-Planck kernel on the force term in the Vlasov equation and using classical convolution ineq...

متن کامل

From Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck Systems to Incompressible Euler Equations: the case with finite charge

We study the asymptotic regime of strong electric fields that leads from the Vlasov–Poisson system to the Incompressible Euler equations. We also deal with the Vlasov–Poisson–Fokker– Planck system which induces dissipative effects. The originality consists in considering a situation with a finite total charge confined by a strong external field. In turn, the limiting equation is set in a bounde...

متن کامل

On Long Time Asymptotics of the Vlasov-fokker-planck Equation and of the Vlasov-poisson-fokker-planck System with Coulombic and Newtonian Potentials

We prove that the solution of the Vlasov-Fokker-Planck equation converges to the unique stationary solution with same mass as time tends to infinity. The same result holds in the repulsive coulombic case for the Vlasov-Poisson-Fokker-Planck system; the newtonian attractive case is also studied. We establish positive and negative answers to the question of existence of a stationary solution for ...

متن کامل

An Asymptotic Preserving Scheme for the Vlasov - Poisson - Fokker - Planck System in the High Field Regime ∗

The Vlasov-Poisson-Fokker-Planck system under the high field scaling describes the Brownian motion of a large system of particles in a surrounding bath where both collision and field effects (electrical or gravitational) are dominant. Numerically solving this system becomes challenging due to the stiff collision term and stiff nonlinear transport term with respect to the high field. We present ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999